www.DRTLonline.com

Physical, Electrical and Environmental Testing

Military Aerospace Communications Industrial Medical

ISDARC CHEES

DYNAMIC RESEARCH AND TESTING LABORATORIES, LLC

A Member of the IEC Electronics Family of Companies

Overview of Risk Mitigation Testing – Electrical

ERAI Conference - April 18 & 19, 2013 Clifton Aldridge Laboratory Manager

Dynamic Research and Testing Laboratories, LLC

Dynamic Research and Testing Laboratories, LLC is located in Albuquerque New Mexico. The Laboratory is within the Electronic Contract Manufacturer "IEC Electronics"

DRTL Organizational Chart

Mark Northrup (Director of Laboratory)

Clifton Aldridge (Laboratory Manager) Jodi Wahl (Marketing Coordinator)

Holly Connelly (Administrative Specialist)

> Teri Kovaleski (Human Resources)

Chris Hoover (Quality Assurance)

Christine Glomski (Internal Auditor)

Karin Zimmerer (Document Control)

DRTL Organizational Chart

Mark Northrup (Director of Laboratory)

Clifton Aldridge (Laboratory Manager) Rachel Garcia (Device Analyst II)

James Taylor (Failure Analysis Engineer)

Tony James (Failure Analysis Engineer)

JR Lucero (Device Technician)

Robert Perea (Device Technician)

Nabahe "Bo" Tewawina (Device Technician)

Dynamic Research and Testing Laboratories, LLC

Navigating the Electrical Test Requirements When Procuring from Non-OCMs

Current Specifications

AS5553 Fraudulent/Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition

AS6081 Fraudulent/Counterfeit Electronic Parts; Avoidance,
Detection, Mitigation, and Disposition – Distributors

AS6171 (Not Released) Test Methods Standard; General Requirements, Suspect/Counterfeit Electrical, Electronic, and Electromechanical Parts

CCAP-101 Counterfeit Components Avoidance Program Certification

TB-0003 Counterfeit Parts & Materials Risk Mitigation

GIFAS 5052 208 Guide for managing electronic component sourcing through non-franchised distributors. Preventing fraud and counterfeiting.

DYNAMIC RESEARCH AND TESTING LABORATORIES, LLC DRTL AMember of the IEC Electronics Family of Companies

- AS5553 Fraudulent & Counterfeit Electronic Parts
- Avoidance, Detection, Mitigation, and Disposition

E.1.10 Electrical Testing

Comprehensive electrical testing should be performed on all parts, across the full temperature range as per the parts' specification, in facilities with test equipment and test engineering expertise suitable for the specific part type. The acquiring activity should approve all test facilities and test methodologies. This test may be life limiting.

E.1.11 Burn-In

Pre Burn-In and Post Burn-In electrical testing should be performed on all parts using the criteria as defined in the applicable part specification. The steps involved in performing burn-in test are described below. This test may be life limiting.

- a. Pre Burn-In Electrical Performance Testing Parts should undergo comprehensive electrical testing to the applicable performance data sheet.
- b. Burn-In Parts (100%) should undergo a powered burn-in at the component's/part's maximum rated temperature.
- c. Post Burn-In Electrical Performance Testing Parts should undergo comprehensive electrical testing to the applicable performance data sheet.

- AS6081 Fraudulent & Counterfeit Electronic Parts
- Avoidance, Detection, Mitigation, and Disposition Distributors

C.3 ELECTRICAL TESTING

Comprehensive electrical testing should be performed on all parts in a facility with test equipment and test engineering expertise suitable for the specific part type. The Customer should approve all test facilities and test methodologies.

C.4 BURN-IN

Pre Burn-In and Post Burn-In electrical testing should be performed on all parts. The steps involved in performing burn-in test are described below.

- a. Pre Burn-In Electrical Performance Testing Parts should undergo comprehensive electrical testing to the applicable performance data sheet.
- b. Burn-In Parts (100%) should undergo a powered burn-in at the part's maximum rated temperature.
- c. Post Burn-In Electrical Performance Testing Parts should undergo comprehensive electrical testing to the applicable performance data sheet.

AS6171 (Not Released) Test Methods Standard; General Requirements, Suspect/Counterfeit Electrical, Electronic, and Electromechanical Parts

- > AS6171 provides further detail to the electrical test requirements
 - 3.4.1.6 Electrical –AS6171Test Method VI
 - Such electrical testing shall be performed using appropriate requirements as specified in related SMDs, MIL-PRFs, manufacturer datasheets or customer supplied requirement documents.
 - Sampling plan calls for 116devices/c=0 tested with no failures allowed. This gives a 90 percent confidence that the percentage failures is at most 2%.
 - The type and extent of electrical testing is so complex to try to screen-out counterfeit parts that it is the responsibility of the User Engineer to make the determination of the specific test requirements that shall be documented in a Test Requirements document that shall become part of a Statement of Work (SOW).
 - The minimum level of electrical testing for the Low Risk Level is defined as the DC Test for Active Devices and Value Measurement for Passive Devices. At the minimum level the tests shall be performed at ambient temperature
 - Detailed guidance provided in AS6171 TEST METHOD VI

AS6171 (Not Released) Test Methods Standard; General Requirements, Suspect/Counterfeit Electrical, Electronic, and Electromechanical Parts

+			E DEVICES KEY ELECTRICAL PARAMETERS	
	PART CATEGORY	ТҮРЕ	KEY ELECTRICAL PARAMETERS	MIL STD/SPEC
	Microcircuit - Linear	(Generic LM111	Input offset voltage & current, raised input offset voltage & current, input bias, collector output voltage (strobed), common mode rejection, low level output voltage, input & output leakage current, pos. & neg. supply current, temp. coeff. Of input offset V & I, Output short circuit current, adj. for input offset volt., volt. Gain, response time(collector output)	DLA SMD 5962-00524
		Operational Amplifiers, Quad, Precision (Generic OP484)	Input offset voltage; Average input offset voltage; Input offset current; Input bias current; Common mode rejection ratio; Power supply rejection ratio; Output high voltage; Output Iow voltage; Large signal voltage gain; Supply current; Slew rate	DLA SMD 5962-00517
		(Generic AD904	Vcc supply current; Power dissipation; Power supply rejection ratio; Offset error; Gain error; Input voltage range; Input logic high & low voltage; Input logic high & low current; Output logic high & low voltage; Differential non-linearity; Signal to noise ratio; Signal to noise and distortion ratio; Worst spur ratio	DLA SMD 5962-02538
	Microcircuit - Digital	Octal Bus Transceiver and Register (Generic 54BCT646)	High & low level output voltage; Input clamp voltage; High & low level input current; Short-circuit output current, Supply currents; Functional tests to verify the Truth table of the SMD; Max. clock frequency; Propagation delay times	DLA SMD 5962-91555
	Microcircuit - Memory	SRAM (Static Random Access Memory), 2M x 8 Bit	Output high & low voltage; Input and output leakage current; Supply currents, Data retention current; Propagation delay times (Address/Chip Enable/Output Enable to data valid, including the write cycle set-up parameters); Functional tests to verify proper operation of SRAM as specified in Appendix A of the SMD (Check all memory cells by using the following algorithms: Checkerboard/checkerboard/ bar, March, XY March CE deselect checkerboard/ checkerboard/bar or	DLA SMD 5962-08219

RESEARCH

CCAP-101 COUNTERFEIT COMPONENTS AVOIDANCE PROGRAM, CERTIFICATION

4.9.6 Passive components

All unmarked passive components (both Level A & B) or not contained in OCM original and verified packaging shall be sample tested, 30 pcs/1000 components for parameters specified below.

The tests shall be in accordance with OCM data sheets or military specifications as applicable.

A. Capacitors:

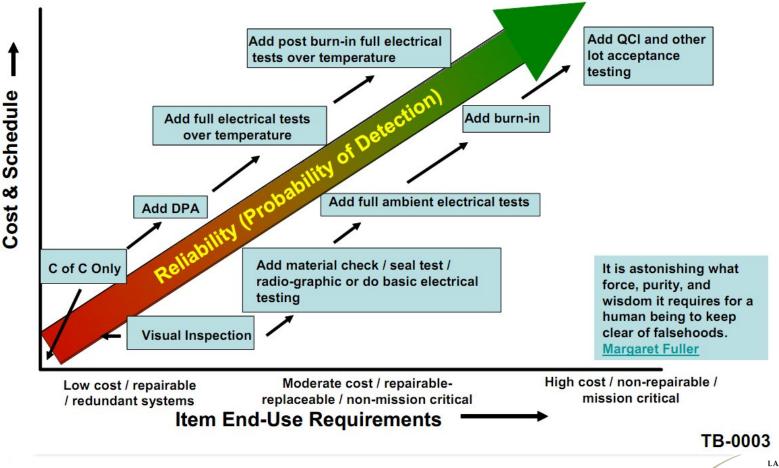
Capacitance and tolerance at 25 ^oC and min/max temp DWV Dissipation factor as applicable ESR (Electrolytics only)

B. Inductors:

Inductance over or within specified frequency and temperature range Q Series resistance

C. Resistors:

Resistance and tolerance at 25 ^oC and min/max temp. Temperature coefficient


D. Other Passives Applicable parameters

TB-0003 Counterfeit Parts & Materials Risk Mitigation

DRTL

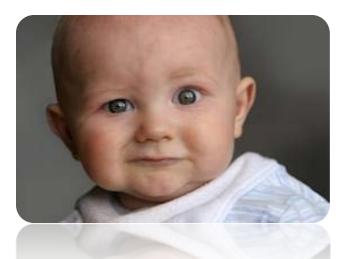
RESEARCH

GIFAS 5052 208 Guide for managing electronic component sourcing through non-franchised distributors. Preventing fraud and counterfeiting

THE FRENCH AEROSPACE INDUSTRIES ASSOCIATION

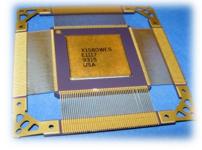
E. Electrical tests

This is a test conducted at room temperature on a per unit or sampling basis, depending on the inspection lot and/or package size, in order to verify the electrical characteristics specified by the manufacturer. This test may be accompanied by tests at operating temperature and life testing, depending on the level of quality required and the criticality of the application.


All electrical and physical tests and analyses must be performed by an internal or outside specialist and recognized laboratory.

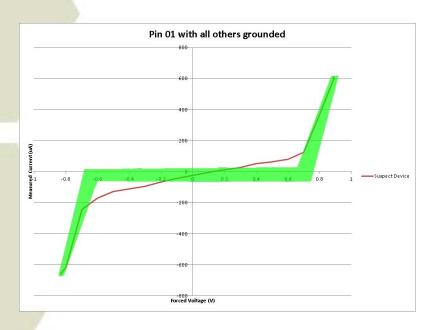
GIFAS/5052/2008

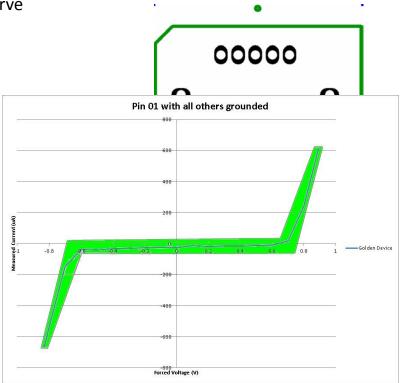
When did "Requirement Specifications" become "Guidance Documents" leaving interpretation to the operator, tester, or user (e.g., Technician, Component Engineer, Program Manager, etc.) ?



> Basic building block devices may be more attractive for counterfeiting

- Examples : Op-amps, comparators, low level logic, ADCs, DACs, MOSFETs, Diodes, Capacitors, Resistors...
- Pros for the counterfeiter
 - Larger selection of pin for pin capable devices to substitute
 - Typical designs may have large margins allowing of passage of system level checks
- Cons for the counterfeiter
 - Typically lower cost devices
 - May need large volume for same price point
- Complex devices (FPGAs, CPU, SIC...)
 - Xilinx, Motorola, and Intel ?
 - Have system security features in the chip (e.g., embedded at the die level) to difficult to repeat or defeat?
 - Most likely will not pass the board assembly system level electrical verification/functional testing?





Going Beyond Simple Pin to Pin Testing

- Obtain Current vs Voltage (IV) curve for golden device
- Software defines passing limits around the golden device curve
- Software builds a mask around the golden device curve
- Suspect devices IV curves obtained
- Suspect devices tested in comparison to the golden device
- Suspect devices tested even with slight damage can be detected.

Full Functional Testing

- Key Parameters may need to be tested in order to validate the functionality of the device under test.
- Devices having the same basic function may not have the same over all performance.
- Degraded performance can reduce over all design margins and system performance.

TEST		_READING	Cust P/N: : Slot = 3	MAX	P/F"	
Iccq	 A	+984.432uA		+2.000mA	" P"	
IOut	A		+5.000mA	+20.000mA	P"	
tSett Er	rB1_A	+800.000nSec	2	+1.500uSec	P"	
INL/LE	A			+0.500 LSB	P"	
DNL	Ā	+0.062 LSB		+0.500 LSB	P"	
Gai	Ā	+0.008 %FSR		+0.400 %FS	R P"	
I	A	+180.576pA		+1.000uA	p"	
7 /	A	+175.418pA		+1.000uA	P"	
	- <u>-</u> A	+174.181pA		+1.000uA	- P"	
		11/11/01/01		11.000000		
			t) Traveler# 1200			
41	CUSTO	OMER: IEC ELECT	RONICS ABQ 2 S/N = 5	Cust P/N: : SI	D-MP1230ABN-Q	
Iil	Test	Date 10/18/201	.2 S/N = 5	Slot = 2	Temperature =	-40"
Iil	###	TEST	READING	MIN	MAX	P/F"
Iih						"
Iih	1	Iccq _A	+513.493uA		+2.000mA	P"
Iih	2	IOut A	+10.267mA	+5.000mA	+20.000mA	P"
Iih	3		A +700.000nSec		+1.500uSec	P"
Iih	4	INL/LE A	+2.174 LSB		+0.500 LSB	FAIL
Iih	5	DNL/DLE A Gain Err A	.002 LSB		+0.500 LSB	P"
Iih		Gain Err 🦯	053 %FSR 819pA		+0.400 %FSR	P"
Iih	7	Gain Err Iil Iil A Iil A	819pA		+1.000uA	P"
Vih	8	Iil _A	4.964pA		+1.000uA	P"
Vih	9	Iil _P	14.383pA		+1.000uA	P"
Vih	10	111 _4	/3.594pA		+1.000uA	P"
	11	Iil _	72.218pA		+1.000uA	P"
Vih	12	Iil -	73.520pA		+1.000uA	P"
Vil	13	Iil -	.72.306pA		+1.000uA	P"
Vil	14 15	Iil .	175.092pA		+1.000uA	P" P"
Vil	15	Iih Iih	124.525pA 140.526pA		+1.000uA +1.000uA	P"
Vil	17	lin Iih	140.526pA 141.174pA		+1.000uA +1.000uA	P"
	-18	Iin Iih	-			P"
	19	Iin Iih	+147.421pA +149.424pA		+1.000uA +1.000uA	P"
		Iih	+149.424pA +150.086pA		+1.000uA +1.000uA	P"
					+1.000uA	p"
	20					
	21	Iih	+156.224pA +152.150pA		+1 000112	D"
	21 22	Iih Iih	+152.150pA		+1.000uA +2.400 V	P"
	21 22 23	Iih Iih Vih	+152.150pA +1.804 V		+2.400 V	P"
	21 22 23 24	Iih Iih Vih Vih	+152.150pA +1.804 V +1.765 V		+2.400 V +2.400 V	P" P"
	21 22 23 24 25	Iih Iih Vih Vih Vih	+152.150pA +1.804 V +1.765 V +1.785 V		+2.400 V +2.400 V +2.400 V	P" P" P"
	21 22 23 24	Iih Iih Vih Vih Vih Vih	+152.150pA +1.804 V +1.765 V +1.785 V +1.790 V	+800.000mV	+2.400 V +2.400 V	P" P"
	21 22 23 24 25 26 27	Iih Iih Vih Vih Vih Vih Vih Vih	+152.150pA +1.804 V +1.765 V +1.785 V +1.790 V +1.248 V	+800.000mV +800.000mV	+2.400 V +2.400 V +2.400 V	P" P" P" P"
	21 22 23 24 25 26	Iih Iih Vih Vih Vih Vih	+152.150pA +1.804 V +1.765 V +1.785 V +1.790 V	+800.000mV +800.000mV +800.000mV	+2.400 V +2.400 V +2.400 V	P" P" P" P" P"

Integral Non-Linearity +2.174 LSB

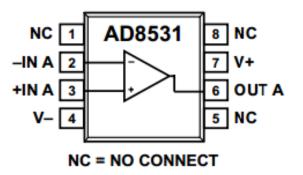
19 20

21

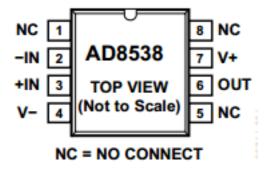
Full Functional Testing

			(27 (IRF540	5)			Q8 (IRFR	024)	
			Suspect	Exemplar	Li	mits	Suspect	Exemplar	L	imits.
Test		Units	SN 2148	SN 1088	Min	Max	SN 2148	SN 1088	Min	Max
BVDSS		V	114.4	113.6	100		64.1	67.6	55	
rdsON (17A and 10A respectively)	Initial	ohms	0.047	0.051		0.077	0.053	0.066		0.075
Vgsth		V	2.57	2.74	2	4	1.66	2.78	2	4
			(27 (IRF540	5)			Q8 (IRFR	024)	
			Suspect	Suspect	Li	mits	Suspect	Suspect	L	imits.
Test		Units	SN 6150	SN 0151	Min	Max	SN 6150	SN 0151	Min	Max
BVDSS		V	121.1	106.3	100		64.1	64.6	55	
rdsON (17A and 10A respectively)	Initial	ohms	0.05	0.055		0.077	0.074	0.078		0.075
Vgsth		V	2.57	2.78	2	4	3.33	3.02	2	4
BVDSS		V	121.3	106.2	100		64.1	64.7	55	
rdsON (17A and 10A respectively)	Post HAST	ohms	0.051	0.055		0.077	0.073	0.077		0.075
Vgsth		V	2.57	2.78	2	4	3.32	3.02	2	4
BVDSS		V	121	106.2	100		64.2	64.7	55	
rdsON (17A and 10A respectively)	Post Thermal Shock	ohms	0.051	0.054		0.077	0.074	0.078		0.075
Vgsth		V	2.57	2.77	2	4	3.33	3.02	2	4

BRTL



S/N	Vz	I _R	V _z for a 1N3000RB	I _R for a 1N3000RB	1
	7.125 – 7.875 V	100 uA max.	58.9–65.1 V	10uA max.	
	I _R = 335 mA	V _R = 5.7 V	I _R = 40 mA	V _R = 47.1 V	
1	<1000V	0.011 uA			
2	59V @ 40 mA	144.6 uA	59V	1710 uA	


Comments: SN 1 appears to be a switching power diode with a reverse breakdown of ~1200V. No signs of leakage or damage of the diode detected. SN 2 appears to be a 62V Zener diode. This diode appears to be a 1N3000RB, however would still fail the reverse current measurement for this device type as well.

Input Offset, Vos 25mV max Output Current 250mA Supply Current, Icc 1 mA

Input Offset, Vos 13uV max Output Current 25mA Supply Current, Icc 180 uA

Summary of Electrical Test Issues

- Current risk mitigation standards are open to interpretation which breeds inconsistency across test facilities in actual test performed and costs.
- Paramount to understand end use (Avionics, Missile, Industrial, Medical)
- Completely define test requirements (DCs, Acs Functional, Over Temp).
- Best case is to have the user define important parameters to tested based on the functionality of the device or based on the requirements of the design
- The user may not have access to design information, however the test facility sould provide different options or levels based on the functionality of the device.
- Suggest read and record data be required for all parameters (data can be reviewed not just failing parameters). Industry Database?
- Recommendations?

ISO 17025 Skill Set Model

Skill Set Model		Compe	tency					
la ca		Expense	Hice				at or	
Instruction-related review / training les the related = Instructions = Checklists		Training On the Observ Test Educat	Job Tri ation	anng	EXF TR(OJ) OBS TS ED(Adindige CA Initiality Initiality Initiality Initiality Monter Methy Pending Skill Training Mover CH Completed Skill Training	
	Planned	Eval. Method	Evaluator	Completed	Planned	Eval. Method	Dynamic Research and Testing Laboratories – Business Instruct	ction
	Dev	JR Lu	cero	er		Rache	Document Title:	
Process					-	Device	DYNAMIC	
P-001, Testing Process	11/30/11	0.0	-				AND TESTING Pin to Pin Curve Trace	
P-001, Testing Process 1-001, SEM Examination	11/30/11	TLO TLO		11/30/11	8/2/11	1	AND TESTING LABORATORIES, LLC	
1-001, SEM Examination	11/30/11	ол	CA	11/30/11	1/30/12	TRC	AND TESTING LABORATORIES, LLC	
1-001, SEM Examination 1-002, Internal Examination 1-013, Olympus B/SO Leica M280 - Infinity nera Operating Procedure					1/30/12 8/2/11	TRC	AND TESTING LABORATORIES, LLC Document Number:	
1-001, SEM Examination 1-002, Internal Examination 1-013, Olympus B/SD Leica M280 - Infinity hera Operating Procedure 1-004, Wire Bond and Die Shear Test	11/30/11 11/30/11 11/30/11	τιο τιο τιο	CA CA CA	11/30/11 11/30/11 1/24/12	1/30/12 8/2/11 8/2/11	TRC TRC TRC	AND TESTING LABORATORIES, LLC	
1001; SEM Examination 1002; Internal Examination 1013; Olympus B/SO Leica M280 - Infinity nera Operating Procedure 1004; Wire Bond and Die Shear Test ructions	11/30/11 11/30/11	TLO TLO	CA CA	11/30/11 11/30/11 1/24/12 11/30/11	1/30/12 8/2/11 8/2/11 8/2/11	TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Number: TSTI-043, Rev C Document Owner: Approver(s):	
1001, SEM Examination 1002, Internal Examination 1013, Olympus B/SD Leica M280 - Infinity nera Operating Procedure 1004, Wire Bond and Die Shear Test ructions 1012, Wet Saw Operation	11/30/11 11/30/11 11/30/11 11/30/11	τιο τιο τυο τιο	CA CA CA CA	11/30/11 11/30/11 1/24/12	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11	TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Document Number: TSTI-043, Rev C	
1001, SEM Examination 1002, Internal Examination 1013, Olympus B/SD Leica M280 - Infinity nera Operating Procedure 1004, Wire Bond and Die Shear Test ructions 1012, Wet Saw Operation 1014, Chemical Decapulation Instructions	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11	τιο τιο τιο τιο τιο	CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12	1/30/12 8/2/11 8/2/11 8/2/11	TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Number: TSTI-043, Rev C Document Owner: Approver(s):	
H001, SEM Examination H002, Internal Examination H013, Olympus B/SO Leica M280 - Infinity hera Operating Procedure H004, Wire Bond and Die Shear Test ructions H012, Wet Saw Operation H014, Chemical Decapulation Instructions H015, Sample Mounting Instructions	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11	τιο τιο τιο τιο τιο τιο	CA CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12 11/30/11	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11	TRC TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Number: TSTI-043, Rev C Document Owner: Approver(s): Jimmy Lucero Clifton Aldridge	
1001, SEM Examination 1002, Internal Examination 1013, Olympus BXSD Leica M280 - Infinity nera Operating Procedure 1004, Wire Bond and Die Shear Test ructions 1012, Wet Saw Operation 1014, Chemical Decapulation Instructions 1015, Sample Mounting Instructions 1016, Solderability Testing	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11	τιο τιο τιο τιο τιο τιο τιο τιο	CA CA CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12 11/30/11 1/24/12	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11	TRC TRC TRC TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Number: TSTI-043, Rev C Document Owner: Approver(s): Jimmy Lucero Clifton Aldridge	
1-001, SEM Examination 1-002, Internal Examination 1-013, Olympus BiSSD Leica M280 - Infinity nera Operating Procedure 1-004, Wire Bond and Die Shear Test ructions 10-012, Wet Saw Operation 10-014, Chemical Decapulation Instructions 10-015, Sample Mounting Instructions 10-016, Solderability Testing 10-005, XRF	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 1/24/12 1/24/12	т.0 т.0 т.0 т.0 т.0 т.0 т.0 т.0	CA CA CA CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12 11/30/11 1/24/12 1/24/12	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 6/15/12	TRC TRC TRC TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Owner: Document Owner: Jimmy Lucero Approver(s): Clifton Aldridge Parent Document: Notify of Changes:	
1001, SEM Examination 1002, Internal Examination 1013, Olympus B/SD Leica M280 - Infinity 1004, Wire Bond and Die Shear Test 1004, Wire Bond and Die Shear Test 1012, Wet Saw Operation 1014, Chemical Decapulation Instructions 1015, Sample Mounting Instructions 1016, Solderability Testing 1005, XRF 10006, Radiographic / %-ray Examination	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 1/24/12 1/24/12	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	CA CA CA CA CA CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12 11/30/11 1/24/12 1/24/12 1/24/12	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 6/15/12 3/15/12	TRC TRC TRC TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Owner: TSTI-043, Rev C Jimmy Lucero Approver(s): Clifton Aldridge Backup Owner: Clifton Aldridge Parent Document: TSTP-001, Testing Process Notify of Changes: All Dynamic Research and Testing Laboratories Employees	
1-001, SEM Examination 1-002, Internal Examination 1-013, Olympus BXSD Leica M280 - Infinity nera Operating Procedure 1-004, Wire Bond and Die Shear Test ructions 1-012, Wet Saw Operation 1-012, Wet Saw Operation 1-014, Chemical Decapulation Instructions 1-015, Sample Mounting Instructions 1-016, Solderability Testing	11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11 11/30/11	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	CA CA CA CA CA CA CA CA CA CA	11/30/11 11/30/11 1/24/12 11/30/11 1/20/12 11/30/11 1/24/12 1/24/12 1/24/12	1/30/12 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 8/2/11 6/15/12 3/15/12 8/2/11	TRC TRC TRC TRC TRC TRC TRC TRC TRC TRC	AND TESTING LABORATORIES, LLC Pin to Pin Curve Trace Document Owner: Document Owner: Jimmy Lucero Approver(s): Clifton Aldridge Parent Document: Notify of Changes:	klist;

A Member of the IEC Electronics Family of Companie

DRTL and IEC Electronics

A Momber of the IEC Electronics Family of Companies

DYNAMIC

DRTL Capabilities

Dynamic Research and Testing Laboratories (DRTL)

- Component Risk Mitigation
- Destructive Physical Analysis
- Failure Analysis
- Parts Screening
- Product Qualifications
- Material Qualifications
- Consulting Services
- ➢ ISO 17025 Certified

Our staff offers highly respected technical expertise, personable service, and quick response.

Can You Afford Not To have A Risk Mitigation Strategy ?

